DECOMPOSITION OF A TANGENT BUNDLE OF A NORMAL ANTI-INVARIANT SUBMANIFOLDS OF A PARAQUATERNIONIC KÄHLER MANIFOLDS

Novac-Claudiu Chiriac PhD Lecturer , "Constantin Brâncuși" University of Târgu-Jiu

Abstract:

We introduce normal anti-invariant submanifolds of a paraquaternionic Kähler manifolds and obtain some basic results on their differential geometry. Also we show that the tangent bundle of a normal anti-invariant submanifolds of a paraquaternionic Kähler manifolds admits the decomposition in complementary orthogonal distribution. **Key words:** anti-invariant submanifold, Kähler manifolds, tangent bundle.

1. Introduction

The paraquaternionic Kähler manifolds have been introduced and studied by Garcia-Rio, Matsushita and Vazquez-Lorenzo. We think of a paraquaternionic Kähler manifold as a semi-Riemannian manifold endowed with two local almost product structures and a local almost complex structure satisfying some compatibility conditions.

In the present paper we define the normal anti-invariant submanifolds of a paraquaternionic Kähler manifold and obtain some basic results on their differential geometry. Also, we show that the tangent bundle of a normal anti-invariant submanifold N of a paraquaternionic Kähler manifold (M, V, g) admits the decomposition (8) where D and D^{\perp} are complementary orthogonal distributions on N.

Throughout the paper all manifolds are smooth and paracompact. If M is a smooth manifold then we denote by F(M) the algebra of smooth functions on M and by $\Gamma(TM)$ the F(M)-module of smooth sections of the tangent bundle TM of M. Similar notations will be used for any other manifold or vector bundle. If not stated otherwise, we use indices: $a, b, c, ... \in \{1, 2, 3\}$ and $i, j, k, ... \in \{1, 2, ..., n\}$.

Let M be a manifold endowed with a *paraquaternionic structure* \mathbb{V} , that is, \mathbb{V} is a rank-3 subbundle of End(TM) which has a local basis $\{J_1, J_2, J_3\}$ on a coordinate neighbourhood $\mathcal{U} \subset M$ satisfying (see Garcia-Rio-Matsushita-Vazquez-Lorenzo [4])

(a)
$$J_a^2 = \lambda_a I$$
, $a \in \{1,2,3\}$,

(b)
$$J_1J_2 = -J_2J_1 = J_3$$
, (1)

(c)
$$\lambda_1 = \lambda_2 = -\lambda_3 = 1$$
.

A semi-Riemannian metric g on M is said to be adapted to the paraquaternionic structure \mathbb{V} if

"ACADEMICA BRÂNCUŞI"PUBLISHER

it satisfies

$$g(X,Y) + \lambda_a g(J_a X, J_a Y) = 0 \ \forall \ a \in \{1,2,3\},$$
 (2)

for any $X, Y \in \Gamma(TM)$, and any local basis $\{J_1, J_2, J_3\}$ of \mathbb{V} . From relation (1) and relation (2) it follows that

$$g(J_aX,Y) + g(X,J_aY) = 0 \quad \forall \ a \in \{1,2,3\}.$$
 (3)

Now, suppose $\{\tilde{J}_1, \tilde{J}_2, \tilde{J}_3\}$ is a local basis of \mathbb{V} on $\tilde{\mathcal{U}} \subset M$ and $\mathcal{U} \cap \tilde{\mathcal{U}} \neq \emptyset$. Then we have

$$\tilde{J}_a = \sum_{b=1}^3 A_{ab} J_b , \qquad (4)$$

where the 3×3 matrix $[A_{ab}]$ is an element of the pseudo-orthogonal group SO(2,1). From (1) and (2) it follows that M is of dimension 4m and g is of neutral signature (2m, 2m).

Next, we denote by $\widetilde{\mathbb{V}}$ the Levi - Civita connection on (M, g). Then the triple (M, \mathbb{V}, g) is called a *paraquaternionic Kähler manifold* if \mathbb{V} is a parallel bundle with respect to $\widetilde{\mathbb{V}}$. This means that for any local basis $\{J_1, J_2, J_3\}$ of \mathbb{V} on $\mathcal{U} \subset M$ there exist the 1-forms p, q, r on \mathcal{U} such that (cf. Garcia-Rio-Matsushita-Vazquez-Lorenzo [4])

(a)
$$(\widetilde{\nabla}_X J_1)Y = q(X)J_2Y - r(X)J_3Y$$
,

(b)
$$(\tilde{\nabla}_X J_2) Y = -q(X) J_1 Y + p(X) J_3 Y$$
, (5)

(c)
$$(\widetilde{\nabla}_X J_3)Y = -r(X)J_1Y + p(X)J_2Y$$
,

2. Decomposition the tangent bundle of normal anti-invariant submanifolds

Now, we consider a non-degenerate submanifold N of (M, \mathbb{V}, g) of codimension n. Then we say that N is a *normal anti-invariant submanifold* of (M, \mathbb{V}, g) if the normal bundle TN^{\perp} of N is anti-invariant with respect to any local basis $\{J_1, J_2, J_3\}$ of \mathbb{V} on \mathcal{U} , that is, we have

$$J_a(T_x J^{\perp}) \subset T_x N$$
, $\forall a \in \{1,2,3\}, x \in \mathcal{U}^* = \mathcal{U} \cap N$. (6)

A large class of normal anti-invariant submanifolds is given in the next proposition.

Proposition 1. Any non-degenerate real hypersurface N of (M, g) is a normal anti-invariant submanifold of (M, \mathbb{V}, g) .

Proof. From (3) we deduce that $g(J_aU, U) = 0$, for any $U \in \Gamma(TN^{\perp})$ and $a \in \{1, 2, 3\}$. Hence $J_aU \in \Gamma(TN)$, which proves (6).

Next, we examine the structures that are induced on the tangent bundle of a normal antiinvariant submanifold N of (M, V, g). First, we put $\mathcal{D}_{ax} = J_a(T_x N^{\perp})$ and note that \mathcal{D}_{1x} , \mathcal{D}_{2x} and \mathcal{D}_{3x} are mutually orthogonal non-degenerate n - dimensional vector subspaces of $T_x N$, for any $x \in N$. Indeed, by using (3), (1b) and (6) we obtain

$$g(J_1X,J_2Y) = -g(X,J_1J_2Y) = -g(X,J_3Y) = 0, \ \forall \ X,Y \in \Gamma(TN^\perp) \ ,$$

which shows that \mathcal{D}_{1x} and \mathcal{D}_{2x} are orthogonal. By a similar reason we conclude that \mathcal{D}_{ax} and \mathcal{D}_{bx} are orthogonal for any $a \neq b$. Then we can state the following.

Proposition 2. Let N be a normal anti-invariant submanifold of (M, \mathbb{V}, g) of codimension n. Then we have the assertions:

(i) The subspaces \mathcal{D}_{ax} of T_xN satisfy the following

$$J_a(\mathcal{D}_{ax}) = T_x N^{\perp} \text{ and } J_a(\mathcal{D}_{bx}) = \mathcal{D}_{cx}$$
,

for any $x \in \mathcal{U}^*$, $a \in \{1,2,3\}$ and any permutation (a,b,c) of (1,2,3).

(ii) The mapping

$$\mathcal{D}^{\perp}: x \in N \longrightarrow \mathcal{D}_{x}^{\perp} = \mathcal{D}_{1x} \oplus \mathcal{D}_{2x} \oplus \mathcal{D}_{3x} ,$$

defines a non-degenerate distribution of rank 3n on N.

"ACADEMICA BRÂNCUŞI"PUBLISHER

(iii) The complementary orthogonal distribution \mathcal{D} to \mathcal{D}^{\perp} in TN is invariant with respect to the paraquaternionic structure, that is, we have

$$J_a(\mathcal{D}_x) = \mathcal{D}_x \ \ \forall \ x \in \mathcal{U}^*, a \in \{1,2,3\}.$$

Proof. First, by using (1) we obtain the assertion (*i*). Next, by (4) and taking into account that J_a , $a \in \{1,2,3\}$, are automorphisms of $\Gamma(TN)$ and \mathcal{D}_{ax} , $a \in \{1,2,3\}$ are mutually orthogonal subspaces we get the assertion (*ii*). Now, we note that the tangent bundle of M along N has the following orthogonal decompositions:

$$TM = TN \oplus TN^{\perp} = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus TN^{\perp}. \tag{7}$$

Then we take $Y \in \Gamma(\mathcal{D}^{\perp})$ and by the assertion (i) we deduce that

$$J_a Y \in \Gamma(\mathcal{D}^{\perp} \oplus TN^{\perp}), \ \forall \ a \in \{1,2,3\}.$$

On the other hand, if $Y \in \Gamma(TN^{\perp})$, by (6) and the assertion (ii) we infer that

$$J_a Y \in \Gamma(\mathcal{D}^{\perp}), \ \forall \ a \in \{1,2,3\}.$$

Thus by using (3) and the second equality in (7) we obtain

$$g(J_aX,Y) = -g(X,J_aY) = 0, \ \forall \ a \in \{1,2,3\},$$

for any $X \in \Gamma(\mathcal{D})$ and $Y \in \Gamma(\mathcal{D}^{\perp} \oplus TN^{\perp})$. Hence $J_aX \in \Gamma(\mathcal{D})$ for any $a \in \{1,2,3\}$ and $X \in \Gamma(\mathcal{D})$, that is, \mathcal{D} is invariant with respect to the paraquaternionic structure \mathbb{V} . This completes the proof of the proposition.

By assertion (iii) of the above proposition we are entitled to call \mathcal{D} the *paraquaternionic* distribution on N. Also, we note that the paraquaternionic distribution in non-trivial, that is $\mathcal{D} \neq \{0\}$, if and only if dim N > 3n.

Let N be a normal anti-invariant submanifold of codimension n of a 4m-dimensional paraquaternionic Kähler manifold (M, \mathbb{V}, g) . Then according to the definitions of \mathcal{D} and \mathcal{D}^{\perp} we have the orthogonal decomposition

$$TN = \mathcal{D} \oplus \mathcal{D}^{\perp} \tag{8}$$

REFERENCES

- [1] **Bejancu, A.**, Geometry of CR-Submanifolds, D. Reidel Publish. Comp., Dordrecht, 1986.
- [2] **Bejancu, A**. and **Farran, H.R**., *Foliations and Geometric Structures*, Springer, Berlin, 2006.
 - [3] Chen, B.Y., Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [4] Garcia-Rio, E., Matsushita, Y. and Vazquez-Lorenzo, R., Paraquaternionic Kähler Manifolds, Rocky Mountain J. Math., 31, 2001, 237-260.