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ABSTRACT. IN THIS PAPER WE PROPOSE TO DEFINE WITHIN MINKOWSKI'S 4-DIMENSIONAL SPACE 

THE MOST IMPORTANT PHYSICAL QUANTITIES WITH TENSOR CHARACTER FROM CLASSICAL 

MECHANICS, NAMELY, THE KINETIC MOMENT AND THE MOMENT OF FORCE. WE WILL FIRST 

DEFINE THE VECTOR PRODUCT TENSOR AFTER WHICH WE WILL DEFINE THE KINETIC MOMENT 

QUADRATIC-TENSOR AND THE MOMENT QUADRATIC-TENSOR OF THE 4-RELATIVISTIC FORCE 

ALSO PRESENTING THEIR FORMS. 
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1.INTRODUCERE 
Cele mai importante mărimi fizice cu caracter tensorial din mecanica clasică sunt 

momentul cinetic 𝑙 ̅ = 𝑟̅ × 𝑝̅ și momentul forței 𝑀̅ = 𝑟̅ × 𝐹̅, mărimi pe care ne propunem să le 

definim și în cadrul spațiului 4-dimensional al lui Minkowski. În definirea acestor mărimi s-a 

utilizat însă produsul vectorial, operație specifică spațiului 3-dimensional, care mu poate fi 

preluată în form ei vectorială pentru 4-vectori, ci necesită considerații de algebră tensorială. 

Într-adevăr, pentru produsul vectorial al vectorilor 𝑎̅1 , 𝑎̅2 ∈ ℝ
3 avem două definiții 

echivalente: 

1. Definiția sintetică: 𝑎̅1 × 𝑎̅2 este un vector perpendicular pe 𝑎̅1 și pe 𝑎̅2, de mărime 

egală cu aria paralelogramului de laturi 𝑎̅1 și 𝑎̅2, orientat după regula burghiului. 

2. Definiția analitică: Dacă 𝑎̅𝑛 = 𝑎𝑛1𝑖̅ + 𝑎̅𝑛2𝑗̅ + 𝑎̅𝑛3𝑘̅, pentru 𝑛 = 1,2, atunci 

𝑎̅1 × 𝑎̅2 = |
𝑖 ̅         𝑗 ̅        𝑘̅
𝑎11    𝑎12    𝑎13
𝑎21    𝑎22    𝑎23

| 

Prima definție nu poate fi adoptată în ℝ4 deoarece (în afară de semnificația deosebită 

a ortogonalității) varietatea liniară ortogonală pe 2 vectori este bidimensională, deci nu 

determină o singură direcție. După cea de-a doua definiție ar fi natural să considerăm un 

produs vectorial a trei cuadrivectori, pentru a forma un determinant de ordinul patru. 

 

 

2. TENSORUL PRODUS VECTORIAL 
Produsul vectorial a doi 4-vectori (sau chiar n-vectori) poate fi definit ca tensor, 

pornind de la observația că de fapt el are componente cu doi indici, unul de la componentele 

vectorului 𝑎̅1 și celălalt de la componentele lui 𝑎̅2. Pentru a putea realiza această extensie a 

noțiunii de produs vectorial, vom analiza produsul vectorial din ℝ3 din punct de vedere 

tensorial. 
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Tensorul produs vectorial al vectorilor din ℝ3 se definește cu ajutorul tensorului de 

ordinul trei, unitar și complet antisimetric 𝛿 = (𝛿𝛼𝛽𝛾) ce apare în relațiile care dau produsele 

vectoriale ale vectorilor bazei ortonormate {𝑒̅1, 𝑒̅2, 𝑒̅3}. Într-adevăr între elementele bazei 

avem relațiile  
𝑒̅𝛼 × 𝑒̅𝛽
= 𝛿𝛼𝛽𝛾𝑒̅𝛾  ,                                                                                                                                   (1) 

câte una pentru fiecare 𝛼, 𝛽, 𝛾 = 1,2,3 , care permit scrierea produsului vectorial dintre 

oricare doi vectori 𝑎̅1 = 𝑎1𝛼𝑒̅𝛼 și 𝑎̅2 = 𝑎2𝛽𝑒̅𝛽 sub forma 

𝑎̅1 × 𝑎̅2 = 𝛿𝛼𝛽𝛾𝑎1𝛼𝑎2𝛽𝑒̅𝛾  . 

Am scris vectorii fără “bară” considerându-i tensori de ordinul întâi în ℝ3; am folosit de 

asemenea convenția de sumare după indicii ce apar de două ori. Se vede că valorile 

componentelor lui nenule sunt ±1, adică 𝛿 este unitar. În plus, orice schimbare a ordinei 

indicilor schimbă semnul componentei respective, adică 𝛿 este complet antisimetric. În 

consecință toate componentele corespunzătoare unor indici egali sunt nule. Fiind un tensor de 

ordinul trei, putem așeza componentele lui într-o rețea tridimensională cu 3 × 3 × 3 = 27 

noduri. 

 Din punct de vedere al clasificării tensoriale, 𝛿 este un pseudo-tensor metric de 

ordinul trei, așa cum rezultă din formulele de schimbare a componentelor: 

𝛿𝛼𝛽𝛾
′ = 𝑡𝛼𝑝𝑡𝛽𝑞𝑡𝛾𝑟𝛿𝑝𝑞𝑟 . 

Într-adevăr, dacă 𝑇 = (𝑡𝛼𝑝) este o transformare metrică a lui ℝ3 avem 𝐷𝑒𝑡 𝑇 = ±1, iar pe de 

altă parte, conform definiției determinanților avem și 𝐷𝑒𝑡 𝑇 = 𝑡1𝑝𝑡2𝑝𝑡3𝑟𝛿𝑝𝑞𝑟 . Astfel, dacă 

pentru o combinație 𝛼𝛽𝛾 avem 𝛿𝛼𝛽𝛾 = ±1, atunci 𝛿𝛼𝛽𝛾
′  va fi și el ±1, în funcție de semnul 

determinantului și paritatea permutării (1,2,3) → (𝛼, 𝛽, 𝛾) . 
 Folosind proprietățile tensorului 𝛿 putem introduce tensorul produs vectorial 𝐵 =

(𝐵𝛼𝛽) prin formula : 

𝑎1 × 𝑎2 = (𝑎1𝛼𝑒𝛼) × (𝑎2𝛽𝑒𝛽) = 𝑎1𝛼𝑎2𝛽𝑒𝛼 × 𝑒𝛽 = 𝑎1𝛼𝑎2𝛽𝛿𝛼𝛽𝛾𝑒𝛾 =

=
1

2
(𝛿𝛼𝛽𝛾𝑎1𝛼𝑎2𝛽 + 𝛿𝛽𝛼𝛾𝑎1𝛽𝑎2𝛼)𝑒𝛾 =

1

2
𝛿𝛼𝛽𝛾(𝑎1𝛼𝑎2𝛽 − 𝑎1𝛽𝑎2𝛼)𝑒𝛾 =

=
1

2
𝛿𝛼𝛽𝛾𝐵𝛼𝛽𝑒𝛾   . 

Cu alte cuvinte, componentele acestui tensor sunt: 

𝐵𝛼𝛽 = 𝑎1𝛼𝑎2𝛽 − 𝑎1𝛽𝑎2𝛼  .                                                                                                            (2) 

 Legătura dintre tensorul 𝐵 și tensorul produs vectorial 𝑏 = (𝑏𝛾) = 𝑎1 × 𝑎2 este 

realizată tot prin tensorul 𝛿 și anume: 

𝑏𝛾 =
1

2
𝛿𝛼𝛽𝛾𝐵𝛼𝛽  ,                                                                                                                            (3) 

Legătură cunoscută sub numele de relație de dualitate între tensorul 𝐵 și vectorul 𝑏. Se vede 

că, cu excepția obținerii vectorului 𝑏 din relația de dualitate, construcția de mai sus poate fi 

făcută pentru vectori în ℝ4, sau în general în ℝ𝑛, produsul vectorial a doi vectori fiind un 

tensor (ortogonal pe cei doi vectori într-un sens oarecare, derivat din structura spațiului 

euclidian respectiv).                 
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3. CUADRITENSORUL MOMENT CINETIC 
Cuadritensorul moment cinetic este, prin definiție, tensorul de ordinul doi 𝒦 = 𝑒 ×

𝒫. Componentele sale 𝐊𝛼𝛽 sunt date, conform definiției produsului vectorial discutată mai 

sus, de formule de tipul (2), adică 

𝑲𝛼𝛽 = 𝑥𝛼𝑝𝛽 − 𝑥𝛽𝑝𝛼    ;         𝛼, 𝛽 = 0,1,2,3,                                                                                 (4) 

unde 𝑥𝛼 sunt componentele 4-vectorului de poziție al evenimentului 𝑒, adică 

{

𝑥0 = 𝑐𝑡
𝑥1 = 𝑥
𝑥2 = 𝑦 
𝑥3 = 𝑧

   , 

iar 𝑝𝛼 sunt componentele cuadriimpulsului 𝒫, deci 

{
 
 

 
 𝑝0 =

1

𝑐
ℰ

𝑝1 = 𝑝𝑥
𝑝2 = 𝑝𝑦
𝑝3 = 𝑝𝑧

 

unde ℰ = 𝑚𝑐2 este energia relativistă a particulei considerate. Explicitând componentele 

𝑲𝛼𝛽 , cuadritensorul moment cinetic poate fi scris sub forma următoarei matrici: 

𝒦 =

(

 
 
 
 
 
 
 
 

0 𝑐 (𝑡𝑝𝑥 −
𝑥

𝑐2
ℰ) 𝑐 (𝑡𝑝𝑦 −

𝑦

𝑐2
ℰ) 𝑐 (𝑡𝑧 −

𝑧

𝑐2
ℰ)

−𝑐 (𝑡𝑝𝑥 −
𝑥

𝑐2
ℰ) 0 𝑥𝑝𝑦 − 𝑦𝑝𝑥 𝑧𝑝𝑥 − 𝑥𝑝𝑧

−𝑐 (𝑡𝑝𝑦 −
𝑦

𝑐2
ℰ)

−𝑙𝑧

√1 −
𝑣2

𝑐2

0 𝑦𝑝𝑧 − 𝑧𝑝𝑦

−𝑐 (𝑡𝑧 −
𝑧

𝑐2
ℰ)

−𝑙𝑦

√1 −
𝑣2

𝑐2

−𝑙𝑥

√1 −
𝑣2

𝑐2

0

)

 
 
 
 
 
 
 
 

 

unde 𝑥𝑝𝑦 − 𝑦𝑝𝑥 , 𝑧𝑝𝑥 − 𝑥𝑝𝑧 , 𝑦𝑝𝑧 − 𝑧𝑝𝑦, pentru a le compara cu elementele de sub diagonală, 

sunt componentele momentului cinetic relativist tridimensional, care diferă de momentul 

cinetic în sens clasic (𝑙𝑥, 𝑙𝑦, 𝑙𝑧) prin factorul (1 − 𝑣2𝑐−2)−1/2. 

 În concluzie, 4-tensorul momentic cinetic este un tensor de ordinul doi contravariant 

în spațiul Minkowski, cu dimensiunea fizică [𝒦] = 𝑀𝐿2𝑇−1, care, pentru 𝑣 ≪ 𝑐, conține 

toate componentele momentului cinetic clasic. 

 

4. CUADRITENSORUL MOMENT AL 4-FORȚEI RELATIVISTE 

Definim cuadritensorul moment al 4-forței relativiste prin formula simbolică 

ℳ = 𝑒 × ℱ , 
unde ℱ este 4-vectorul putere-forță. Ținând cont de expresiile componentelor produsului 

vectorial (2), componentele lui ℳ vor fi: 

ℳ𝛼𝛽 = 𝑥𝛼𝐹𝛽 − 𝑥𝛽𝐹𝛼   ;    𝛼, 𝛽 = 0,1,2,3 .                                                                                       (5) 

Unde 𝑒 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) și ℱ = (𝐹0, 𝐹1, 𝐹2, 𝐹3). 
Înlocuind componentele 4-forței obținem componentele ℳ𝛼𝛽  sub forma: 
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ℳ =

(

 
 
 
 
 
 
 
 
 
 
 
 

0
𝑐𝑡𝐹𝑥 −

𝑥

𝑐
𝒞

√1 −
𝑣2

𝑐2

𝑐𝑡𝐹𝑦 −
𝑦

𝑐
𝒞

√1 −
𝑣2

𝑐2

𝑐𝑡𝐹𝑧 −
𝑧

𝑐
𝒞

√1 −
𝑣2

𝑐2

𝑥

𝑐
𝒞 − 𝑐𝑡𝐹𝑥

√1 −
𝑣2

𝑐2

0
𝑥𝐹𝑦 − 𝑦𝐹𝑥

√1 −
𝑣2

𝑐2

𝑧𝐹𝑥 − 𝑥𝐹𝑧

√1 −
𝑣2

𝑐2

𝑦

𝑐
𝒞 − 𝑐𝑡𝐹𝑦

√1 −
𝑣2

𝑐2

𝑦𝐹𝑥 − 𝑥𝐹𝑦

√1 −
𝑣2

𝑐2

0
𝑦𝐹𝑧 − 𝑧𝐹𝑦

√1 −
𝑣2

𝑐2

𝑧

𝑐
𝒞 − 𝑐𝑡𝐹𝑧

√1 −
𝑣2

𝑐2

𝑥𝐹𝑧 − 𝑧𝐹𝑥

√1 −
𝑣2

𝑐2

𝑧𝐹𝑦 − 𝑦𝐹𝑧

√1 −
𝑣2

𝑐2

0

)

 
 
 
 
 
 
 
 
 
 
 
 

 

 

unde 𝒞 = 𝑑ℰ/𝑑𝑡 este puterea relativistă, iar 𝑥𝐹𝑦 − 𝑦𝐹𝑥 , etc. sunt componentele momentului 

forței relativiste tridimensionale 𝑀̅ = 𝑟̅ × 𝐹̅. Se constată ușor că [ℳ] = 𝑀𝐿2𝑇−2 și că, 

pentru 𝑣 ≪ 𝑐, unele componente ale lui ℳ se reduc la componentele momentului forței în 

sens clasic. În plus, deoarece ℱ = 𝑑𝒫/𝑑𝜃, iar 𝒰 este paralel cu 𝒫, deci 𝒰 × 𝒫 = 0, rezultă 

că: 

ℳ =
𝑑𝒦

𝑑𝜃
 .                                                                                                                                    (6) 

Această formulă este cunoscută ca ecuația de variație a 4-tensorului moment cinetic. 
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