
THE USE OF GENERATIVE ARTIFICIAL INTELLIGENCE IN THE INTERNATIONAL ACADEMIC ENVIRONMENT: ETHICAL PERSPECTIVES, REGULATIONS AND RECOMMENDATIONS

Andreea-Mihaela CILIBIU*

***Lecturer, Ph.D., “Constantin Brancusi” University of Targu Jiu, Romania**

Abstract: *Generative artificial intelligence (GenAI) has disrupted traditional methods of knowledge production in scientific research, reshaping criteria of validation, verifiability and authorship within the academic sphere. The use of GenAI entails both benefits and risks, including source fabrication, algorithmic bias, hallucinations and the erosion of trust in evaluation processes. This article examines the impact of artificial intelligence on academic integrity and investigates international standards in this field. It argues that fostering a culture of digital responsibility constitutes the foundation for the ethical use of AI technologies in higher education.*

Keywords: *artificial intelligence; generative AI; ethics; academic integrity; university policies;*

**Contact details
of the
author(s):**
andreeamihuela.cilibiu@gmail.com

INTRODUCTION

Generative artificial intelligence (GenAI) has placed the academic environment at the center of major conceptual transformations, as it raises fundamental questions concerning originality, verifiability, and academic responsibility (Stokel-Walker & Van Noorden, 2023).

GenAI has been rapidly integrated into university practices, including writing, translation, summarization, data analysis, the preparation of teaching materials, assessment and even methodological support for research. However, the core challenge lies in the fact that GenAI reconfigures the relationship between authorship, knowledge, and responsibility at a pace that exceeds the capacity of academic norms to adapt. This technological evolution compels higher education institutions to reassess the fundamental processes of teaching, assessment, and research.

Generative Artificial Intelligence (GenAI) models, such as Large Language Models (LLMs), generate new, coherent and contextually relevant content that goes beyond simple aggregation; however, they do so without genuinely “understanding” meaning. This limitation is widely regarded as a major risk to research integrity, as it may compromise the accuracy of results, the verifiability of scientific inquiry and trust in the knowledge produced.

Recent literature emphasizes that the uncritical use of artificial intelligence tools risks undermining fundamental principles of research, including intellectual honesty, methodological transparency and epistemic responsibility. The generation of erroneous, incoherent, or fabricated information, together with the difficulty of distinguishing between valid content and content that appears plausible yet lacks a sound evidentiary basis, may lead to distortions of scientific evidence and to the propagation of errors within the academic literature. The existence of these epistemic risks associated with AI underscores the need for a cautious and reflexive approach, in which artificial intelligence is employed as an auxiliary tool, subject to rigorous human oversight and continuous critical evaluation (Bender et al., 2021). Only through reflective and responsible use can artificial intelligence support scientific progress without compromising research integrity.

On the other hand, the literature also highlights the benefits of the responsible use of GenAI, which some authors argue may outweigh the associated risks. These benefits include the enhancement of student learning experiences and even improvements in teaching performance, with GenAI functioning as a genuine assistant in the learning process, supporting the development of differentiated curricula and inclusive, differentiated learning tasks that address the diverse needs of students (Bittle & El-Gayar, 2025).

Moreover, within the current socio-economic context, in which the labor market already demands competencies related to the use of artificial intelligence, the absence of academic training in this area may further exacerbate existing skills gaps (de Fine Licht, 2024).

At the international level, there is still no consensus regarding the use of artificial intelligence in universities. Higher education institutions have adopted a range of institutional policies, varying from the complete prohibition of generative tools such as ChatGPT in assignments and assessments to their controlled integration, accompanied by explicit rules concerning transparency, citation practices and academic responsibility.

1. ARTIFICIAL INTELLIGENCE (AI): A REAL CHALLENGE FOR UNIVERSITY ETHICS

The accelerated pace of digitalization in universities and the use of artificial intelligence (AI) in the academic sphere have redefined the nature of ethical responsibility in such a way that today it is no longer possible to discuss university ethics without addressing the impact of AI, data protection, algorithmic transparency and responsibility in the use of digital tools.

Accordingly, recent concerns in the field of academic ethics and integrity have increasingly focused on generative artificial intelligence (GenAI), which is analyzed in terms of benefits versus risks: efficiency, access to information and enhanced analytical capacity versus the erosion of academic honesty (academic misconduct, plagiarism etc.); an emphasis on traditional education versus preparation for the demands of the future.

In the current scholarly literature, the issues identified encompass a wide range of aspects, including the abusive use of artificial intelligence tools based on large language models (LLMs; for example, ChatGPT, an OpenAI chatbot) in the production of academic work – from reports, essays and seminar projects to scientific articles and theses – which raises concerns related to authorship,

responsibility, originality, verifiability and intellectual property. Additional concerns relate to academic dishonesty – which has prompted the reconsideration of assessment methods or even the prohibition of such tools, as well as dependence on AI technologies and a diminished engagement in learning at the expense of creativity and critical thinking among students (Bittle & El-Gayar, 2025).

On the other hand, the literature also discusses the benefits associated with the responsible use of GenAI, benefits that some authors argue may outweigh the existing risks. These include the enhancement of student learning experiences and even improvements in teaching performance, with GenAI functioning as a genuine assistant in the learning process, supporting the development of differentiated curricula and inclusive, differentiated learning tasks that address the diverse needs of students (Bittle & El-Gayar, 2025).

Other authors emphasize the need to train students in the ethical use of GenAI, to clearly specify limitations and conditions of use in curricular documents (course syllabi) and to introduce an explicit requirement to declare the use of GenAI tools. “This highlights the need for the continuous adaptation of educational practices in order to balance the benefits of GenAI with the preservation of academic integrity” (Bittle & El-Gayar, 2025).

Therefore, “balancing the benefits and risks of GenAI in education requires a coordinated and sustained research effort. Through the development of advanced detection tools, the training of faculty members, the establishment of ethical guidelines and the continuous evaluation of the impact of GenAI, researchers can contribute to the responsible and balanced integration of generative AI in higher education. This multifactorial approach will ensure that GenAI enhances learning without compromising academic integrity” (Bittle & El-Gayar, 2025).

The European Union Artificial Intelligence Regulation (EU AI Act, 2024) represents the world’s first comprehensive and binding regulatory framework dedicated to artificial intelligence. Its objective is to ensure that the development and use of AI systems within the European space are safe, ethical, transparent, and centered on the protection of fundamental human rights.

The Regulation emphasizes the importance of implementing AI systems in education “to promote high-quality digital education and training and to enable all learners and teachers to acquire and share the necessary digital skills and competences, including media literacy and critical thinking, in order to participate actively in the economy, society and democratic processes” (EU AI Act, 2024).

At the same time, the Regulation highlights the need to classify AI systems and to designate those used in education and vocational training as “high-risk AI systems,” given that they may shape an individual’s educational and professional trajectory and, consequently, affect their ability to secure a livelihood (EU AI Act, 2024). This classification applies in particular to AI systems used for determining access to or admission to educational institutions, allocating individuals to educational or vocational training programs at all levels, assessing learning outcomes, evaluating an individual’s appropriate level of instruction, significantly influencing the level of education and training that individuals receive or can access, or monitoring and detecting prohibited behavior by pupils and students during examinations (EU AI Act, 2024). The underlying premise is that, when improperly designed or used, such systems may be highly intrusive, may violate the right to education and training as well as the right to non-discrimination, and may perpetuate historical patterns of discrimination – for example, against women, certain age groups, persons with disabilities, or individuals of particular racial or ethnic origins or sexual orientations (EU AI Act, 2024).

From another perspective, GenAI has disrupted traditional methods of knowledge production in scientific research, as it is capable of generating coherent and meaningful texts based on statistical probabilities rather than semantic understanding. Large language models (LLMs) are therefore sometimes described as “stochastic parrots,” entailing significant risks and potential harms

associated with their use (Bender et al., 2021, p. 616). Accordingly, “the tendency of language models (LMs) to amplify biases and other problems present in training data, together with the tendency of researchers and other users to mistake improvements in language model performance for genuine understanding of natural language, creates real risks of harm in the world as these technologies are deployed” (Bender et al., 2021, p. 616).

Moreover, “the discrepancy between the appearance that generative artificial intelligence models ‘understand’ the texts they use and generate and the reality that they understand neither language nor the real world may lead educators and students to place unwarranted trust in the outputs produced by these systems. This situation poses serious risks for the future of education” (UNESCO, 2023).

Another major issue associated with the use of LLMs concerns phenomena referred to in the recent literature as “hallucinations”, namely the generation of false, ungrounded, or entirely fabricated information, logical inconsistencies, and nonexistent references. These issues were already discussed in early critical works on language models, which highlighted the production of fluent and seemingly coherent text that nonetheless lacks epistemic grounding (Bender et al., 2021). The term “hallucinations” was subsequently consolidated in the scholarly literature to denote these structural epistemic limitations of large language models (Stokel-Walker & Van Noorden, 2023; Dang et al., 2025).

All these phenomena are considered major risks to research integrity, as they may affect the accuracy of results, the verifiability of scientific inquiry, and trust in the knowledge produced. They may also lead to distortions of scientific evidence and to the propagation of errors in the academic literature, thereby underscoring the need for an approach grounded in intellectual honesty, methodological transparency, and epistemic responsibility.

With regard to the use of artificial intelligence in scientific publishing, the Committee on Publication Ethics (COPE) – one of the most influential international organizations in the field of publication ethics, bringing together editors, journals, and leading academic publishers – issued an official position statement in 2023 aimed at clarifying how these technologies may be used ethically in the writing, review, and publication of scholarly work. “COPE joins other organizations, such as WAME and the JAMA Network, among others, in explicitly stating that artificial intelligence tools cannot be listed as authors of a scientific paper” (COPE, 2023). The rationale is both ethical and legal: “Artificial intelligence tools cannot meet the criteria for authorship because they cannot take responsibility for the submitted work. As non-legal entities, they cannot declare the presence or absence of conflicts of interest, nor can they manage copyright or licensing agreements” (COPE, 2023). Authorship entails moral and legal responsibility, capacities that artificial intelligence does not possess.

COPE further emphasizes that “authors who use artificial intelligence tools in manuscript writing, in the production of images or graphical elements, or in data collection and analysis must ensure full transparency by explicitly declaring, in the ‘Materials and Methods’ section (or an equivalent section), how the artificial intelligence tool was used and which tool was employed” (COPE, 2023). The aim is not to prohibit the use of AI, but to ensure transparency and the verifiability of the research process.

Another essential element of COPE’s (2023) position is the clear assertion that “authors are fully responsible for the content of the manuscript, including any parts generated with the assistance of an artificial intelligence tool, and are accountable for any breaches of publication ethics”. Consequently, any factual errors, instances of plagiarism, violations of publication ethics, or infringements of copyright rest exclusively with the human authors, not with the tool used.

In a similar vein, ALLEA (All European Academies), the European Federation of Academies of Sciences and Humanities, revised and published the European Code of Conduct for Research Integrity, the reference document at the European level regarding ethical and professional standards in scientific research, used by universities, research institutes, funding bodies and academic journals. The 2023 edition reflects recent transformations in the scientific ecosystem, including the use of artificial intelligence, and highlights four core principles regarded as fundamental to any responsible research activity – principles that are directly relevant in the context of AI use: reliability, honesty, respect and accountability (ALLEA, 2023).

Beyond the main forms of research misconduct – data fabrication, data falsification, unjustified authorship and plagiarism – the Code also notes that “there are other violations of good research practice that distort the scientific record or compromise the integrity of the research process or researchers (...), including “the concealment of the use of artificial intelligence or automated tools in the creation of content or in the drafting of publications” (ALLEA, 2023).

Accordingly, researchers are required to report “their research results and methods, including the use of external services or artificial intelligence and automated tools, in a manner consistent with accepted disciplinary standards and that enables verification or replication, where applicable” (ALLEA, 2023, p. 7).

The ALLEA Code (2023) marks a maturation of ethical governance in European research, adapting classical principles of scientific integrity to new technological realities. In the context of artificial intelligence use, the document reaffirms a central message: technology may support research, but it cannot replace responsibility, critical judgment and human ethics.

2. THE USE OF ARTIFICIAL INTELLIGENCE IN INTERNATIONAL UNIVERSITIES: BETWEEN PROHIBITION, REGULATION, AND RESPONSIBLE USE

At the international level, there is still no consensus regarding the use of artificial intelligence in universities. Higher education institutions have adopted a range of institutional policies, varying from the complete prohibition of generative tools such as ChatGPT in assignments and assessments to their controlled integration, accompanied by explicit rules on transparency, citation practices and academic responsibility.

During the period 2022–2023, numerous higher education institutions implemented strict restrictive measures in response to the impact of generative AI on academic integrity. Subsequently, as institutional guidelines and normative frameworks for the responsible use of artificial intelligence in education were developed, these policies evolved toward conditionally permissive models that acknowledge the pedagogical potential of AI without compromising standards of academic integrity.

For example, in regions such as Guangdong–Hong Kong–Macao, universities have shifted from total prohibition to a model of “limited openness,” allowing a restricted number of AI queries and requiring the clear labeling of AI-generated content (Chen & Li, 2025). “‘The ban’ on the use of generative artificial intelligence at Guangdong University of Technology does not represent the first attempt to limit the application of generative AI in the academic environment of the Guangdong–Hong Kong–Macao Greater Bay Area. Since ChatGPT triggered a global wave of interest in artificial intelligence at the end of 2022 – with the University of Hong Kong acting as a pioneering institution – numerous universities in this region have successively issued restrictive orders on the use of AI technologies” (Chen & Li, 2025). The use of GenAI tools such as ChatGPT was considered plagiarism and was prohibited in courses, assignments, and assessments. In 2024, this policy was revised, “allowing students to submit prompts to artificial intelligence tools up to 20 times per month,

provided that the generated content is clearly marked in the work and a record of the original modifications is maintained” (Chen & Li, 2025).

Starting from the premise that, although “the abusive use of generative artificial intelligence has indeed affected academic innovation,” it is not a “monster,” Chen and Li (2025) frame the situation as a genuine ethical dilemma comparable to the trolley problem. “A true ‘trolley dilemma’ is currently unfolding in the context of AI technology: when technological progress comes into conflict with ethical requirements, should the ‘technological train’ that risks running out of control be stopped immediately, or should the risk of advancing toward an as-yet-unknown future of innovation be accepted?” (Chen & Li, 2025). As the very metaphor of the trolley problem suggests, the solution does not lie in an exclusive choice between prohibition and permissiveness, but in the construction of an open and participatory framework for dialogue and governance. “When government, industry, universities and society jointly participate in rule-making, and when technological innovation and humanistic concern achieve a dynamic balance, universities [...] can truly resolve this ‘trolley dilemma’ and open a new trajectory for higher education in the age of artificial intelligence: replacing uniform regulation with flexible oversight, strengthening public trust through technological transparency, and overcoming institutional frictions through interregional cooperation.” Moreover, “the real challenge is not whether artificial intelligence should start or stop, but how to determine the direction in which it should move” (Chen & Li, 2025).

Another relevant example of a university policy on the use of generative artificial intelligence in the academic environment is provided by Harvard University (USA). “The University supports responsible experimentation with generative artificial intelligence tools; however, there are a number of essential considerations that must be taken into account when using them, including information security and data protection, regulatory compliance, copyright, and academic integrity” (Harvard University Office of the Provost, n.d.). The policy prohibits “the input of classified data, including non-public research data, into generative artificial intelligence tools”; it emphasizes responsibility for the content produced or published, drawing attention to content that may be “inaccurate, misleading or entirely fabricated [a phenomenon sometimes referred to as ‘hallucinations’],” and stresses that “careful review of AI-generated content is required prior to publication.” It further insists on “compliance with existing academic integrity policies”, consultation of the guidelines and policies applicable to students and faculty within each school, and communication with instructors regarding the rules governing permissible uses (if any) of generative artificial intelligence in courses and academic activities.

In practice, Harvard University’s approach to adapting to artificial intelligence involves balancing technological innovation with academic integrity through a flexible, faculty-driven model. This includes rethinking student assessment (such as in-person examinations and handwritten assignments), policies that restrict laptop use in the classroom, the prohibition of AI use by some instructors, the encouragement of AI as a learning tool by others, student training in the responsible use of AI, the development of critical thinking skills, and preparation for “a world shaped by artificial intelligence.” Amanda Claybaugh, Dean, articulates the philosophy underpinning this flexible approach: “AI is a powerful tool in the hands of someone who knows how to evaluate its work – and that means someone who knows how to do the work themselves. We must ensure that this is what students learn” (Times of India, 2025). Three years after the emergence of ChatGPT, “Harvard’s approach to artificial intelligence balances caution with the pursuit of opportunity. By combining AI integration with carefully structured and AI-resilient assessment methods, the university prepares its students to think critically, adapt creatively and use technology effectively. The objective is clear: in the age of artificial intelligence, mastery no longer means only

understanding content, but also understanding the tools that can shape that content” (Times of India, 2025).

The University of Oxford (United Kingdom) contributes to strengthening an academic culture of digital responsibility adapted to the ethical challenges of the twenty-first century and distinguishes between general guidance on the safe use of generative artificial intelligence and specific policies applicable to research, establishing distinct requirements for responsibility and transparency (University of Oxford, 2025a, 2025b).

Accordingly, the Guidance on the Safe and Responsible Use of Generative AI Tools promotes a balanced approach that supports exploration and integration of these technologies into academic practice without compromising integrity, rigor or intellectual responsibility (University of Oxford, 2025a). Emphasis is placed on the ethical use of artificial intelligence, underscoring the obligation of students and researchers to demonstrate honesty, transparency and critical thinking with respect to algorithmically generated content, and reaffirming that responsibility for the accuracy, originality, and quality of outcomes remains exclusively human (University of Oxford, 2025a).

With regard to academic assessment, the guidance establishes a strict rule: the use of artificial intelligence is permitted only when it is explicitly authorized and must be formally declared; otherwise, it is considered equivalent to academic misconduct and plagiarism and it is sanctioned in accordance with university regulations. This position reflects institutional concern for maintaining fairness and the authenticity of competency assessment (University of Oxford, 2025a).

In relation to research activities, the document introduces the concept of “substantive use” of GenAI, which entails an obligation to declare its use in situations such as data analysis, literature reviews, hypothesis formulation, or content generation. At the same time, it recognizes legitimate auxiliary uses, such as linguistic support or document formatting, highlighting the need for a nuanced distinction between intellectual assistance and intellectual substitution (University of Oxford, 2025a).

The guidance also addresses the dimension of student well-being, warning about the fundamental limitations of GenAI tools in emotional and psychological contexts and reaffirming the indispensable role of specialized human support. It simultaneously emphasizes the importance of developing authentic academic competencies – critical thinking, evidence-based argumentation and intellectual autonomy – competencies that cannot be replaced by technology (University of Oxford, 2025a).

The University of Oxford provides official access to GenAI tools (e.g., ChatGPT Edu for students and staff), but grounds its policy in principles of responsible and safe use, drawing attention to the fact that such tools may produce outputs containing inaccuracies, fabricated information or biases present in the data on which they were trained. The guidance includes recommendations concerning data protection, information security and best practices for integrating AI into research projects (University of Oxford, 2025a).

It can therefore be stated that, in the University of Oxford’s vision, artificial intelligence is conceived as a tool to support educational and research processes rather than as a substitute for knowledge or human responsibility.

The second document, Policy for Using Generative AI in Research, has as its primary objective ensuring the responsible and ethical use of these technologies throughout the entire research lifecycle. It establishes clear expectations for researchers and professional staff supporting research, guiding the integration of GenAI into research processes in a manner that respects standards of transparency, scientific rigor, academic integrity and legal compliance (University of Oxford, 2025b).

The policy includes a set of essential guidelines and criteria for the use of GenAI tools: users are responsible for the generated content and must maintain a critical stance toward the outputs

produced by these technologies, acknowledging their limitations (e.g., the tendency to generate erroneous results or biases). The document recommends caution regarding the uploading of copyrighted or confidential materials and emphasizes the need to comply with regulations on data protection and information security (University of Oxford, 2025b).

The policy also defines the concept of “substantive use” of GenAI in research, encompassing operations such as data analysis, literature review, hypothesis formulation, idea or code generation, transcription, and document drafting. At the same time, it excludes routine uses that do not significantly affect the research process, such as linguistic support for non-native speakers in translation activities, language refinement, or document formatting (University of Oxford, 2025b).

Another important aspect of the policy concerns the declaration of GenAI use: when independent tools are used in a substantive manner, researchers are encouraged to disclose their use, including details such as the name of the tool, its version, and how it influenced the research process. This practice supports principles of accountability, transparency and adherence to good research practices (University of Oxford, 2025b).

It can thus be observed that the policies adopted by leading universities at the international level indicate a paradigm shift: fewer and fewer institutions maintain a total ban on the use of artificial intelligence, while the majority opt for models of permitted, but conditional use, in which decisions rest with individual instructors or are guided by flexible institutional policies for responsible integration.

University strategies and guidelines increasingly propose the rethinking of assessment methods aimed at limiting abusive uses of AI while simultaneously encouraging the development of competencies related to working with these technologies. Examples include oral assessments, projects requiring personal reflection, or the explicit declaration and citation of artificial intelligence use.

On the one hand, the literature supporting bans on AI use argues that such measures are necessary to protect academic integrity and to avoid controversial technological practices, such as the use of data without consent, the exploitation of precarious labor or negative environmental impacts. It is also emphasized that not all universities possess the resources required to provide adequate training and secure infrastructure for the responsible use of artificial intelligence (de Fine Licht, 2024).

On the other hand, authors who critique total bans argue that students will continue to use artificial intelligence without authorization, “covertly,” and that a strictly prohibitive approach deprives them of the opportunity to learn how to use these tools ethically, critically and responsibly. In a socio-economic context in which the labor market already demands AI-related competencies, the absence of academic training in this area may exacerbate existing skills gaps (de Fine Licht, 2024). “By restricting access to such tools, educational institutions risk denying students exposure to innovative learning methodologies that prepare them for a future in which artificial intelligence will play a central role in many professions. Moreover, as argued in the same body of literature, the use of generative artificial intelligence in education fosters critical thinking and digital literacy – skills essential for navigating and evaluating the accuracy of information in the digital age” (de Fine Licht, 2024, p. 12).

In the absence of a consensus, an increasing number of universities are adopting “middle-ground” policies that require course syllabi to clearly specify whether, how and to what extent artificial intelligence may be used. For example, AI may be permitted for brainstorming activities or linguistic support, but prohibited for drafting final texts; its use may be allowed only with explicit citation or entirely banned during examinations.

Within these policies, it is consistently emphasized that final responsibility for the accuracy of content, originality and appropriate citation rests with the student, and that abusive use of artificial intelligence is treated as a violation of academic ethics and integrity standards.

Research on the development of social responsibility highlights the need for holistic educational approaches centered on values, active engagement, and the relationship between students, institutions, and the broader community (Loga, R.-G., 2025a). In this sense, university policies on the use of generative artificial intelligence should move beyond a logic of prohibition and promote models of responsible, reflexive and transparent use, integrated into the development of students' ethical and civic competencies.

Considering that students' digital education is the result of a cumulative process that begins within the family (Loga, R.-G., 2025b) and continues within educational institutions, university policies on the use of generative artificial intelligence should adopt a formative and preventive approach focused on the development of responsibility, self-regulation and critical thinking.

CONCLUSIONS

Concerns related to academic integrity have been the primary drivers behind the adoption of restrictive policies or explicit bans on the use of generative artificial intelligence in the university environment.

One of the main concerns is the risk that students may present AI-generated content as their own intellectual work, which constitutes plagiarism and undermines the principles of originality and academic responsibility.

Beyond the risks associated with plagiarism, universities have also expressed a range of additional significant concerns, including superficial learning, the development of excessive dependence on automated tools, vulnerabilities related to data protection, algorithmic bias, and the potential negative impact on research ethics and assessment processes. In this sense, artificial intelligence is perceived not merely as a technological tool, but as a factor capable of profoundly shaping academic practices and epistemic norms.

In order to counteract the effects of these risks, some universities have introduced clear prohibitions on the use of generative artificial intelligence in activities such as assignment writing, examinations, or the completion of academic projects, treating violations in a manner comparable to cases of plagiarism. In other instances, a form of implicit prohibition has been adopted, whereby the use of AI is considered impermissible in the absence of explicit authorization from the instructor, clearly stated in the course syllabus or assessment instructions, with appropriate source acknowledgment (see, for example, Cornell University, n.d.).

This situation gives rise to two pertinent questions: Is prohibition a sustainable solution in an educational environment deeply shaped by technological innovation? And should education not learn to manage technology rather than exclude it?

An analysis of the evolution of university policies at the international level suggests that institutions are not moving toward a general and permanent ban on artificial intelligence, but rather toward the establishment of clear normative frameworks for its responsible use. Although, initial bans played an important role in regulation and reflection, current trends promote contextual regulation, transparency, and ethical education, integrating artificial intelligence into academic practice in a critical and reflexive manner rather than excluding it altogether.

The development of a culture of digital responsibility constitutes the foundation of the ethical use of artificial intelligence technologies in higher education, as it involves not only the adoption of

formal rules, but also the internalization of academic values and practices grounded in integrity, transparency and individual responsibility. Such a culture entails building the competencies of students and faculty regarding the functioning, limitations and risks of AI technologies, as well as the ability to assess their impact on teaching, learning, assessment and research processes.

In the absence of a culture of digital responsibility, the use of artificial intelligence risks becoming either opaque and unaccountable or purely instrumental, fostering the erosion of intellectual autonomy or violations of academic integrity norms. Digital responsibility, therefore, cannot be reduced to compliance with institutional policies alone; rather, it requires an ongoing reflexive commitment to the ethical use of technology, oriented toward safeguarding the quality of education and sustaining trust in the academic environment.

REFERENCES

ALLEA – All European Academies. (2023). The European Code of Conduct for Research Integrity (Revised Edition). <https://allea.org/code-of-conduct/>; Accessed on December 15, 2025;

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21, pp. 610–623). Association for Computing Machinery. <https://doi.org/10.1145/3442188.3445922>, Accessed on December 15, 2025;

Bittle, K., & El-Gayar, O. (2025). Generative AI and Academic Integrity in Higher Education: A Systematic Review and Research Agenda. *Information*, 16(4), 296. <https://doi.org/10.3390/info16040296>, Accessed on December 12, 2025;

Chen, J., & Li, Z. (2025). Behind the ban on generative artificial intelligence: The Trolley Problem of universities in the Guangdong-Hong Kong-Macao Greater Bay Area. *NewsGD*. <https://www.newsgd.com/node/5ca517de2b/f0d9125e34.shtml> <https://allea.org/code-of-conduct/>; Accessed on December 15, 2025;

COPE Council. 2023 COPE position - Authorship and AI – English, <https://doi.org/10.24318/cCVRZBms>, Accessed on December 15, 2025;

Cornell University. (n.d.). AI & academic integrity. Center for Teaching Innovation. <https://teaching.cornell.edu/generative-artificial-intelligence/ai-academic-integrity>, Accessed on December 21, 2025;

Dang, A.-H., Tran, V., & Nguyen, L.-M. (2025). Survey and analysis of hallucinations in large language models: Attribution to prompting strategies or model behavior. *Frontiers in Artificial Intelligence*, 8, 1622292. <https://doi.org/10.3389/frai.2025.1622292>; Accessed on December 15, 2025;

de Fine Licht, K. (2024). Generative artificial intelligence in higher education: Why the “banning approach” to student use is sometimes morally justified. *Philosophy & Technology*, 37:113. <https://doi.org/10.1007/s13347-024-00799-9>, Accessed on December 21, 2025;

Harvard University Office of the Provost. (n.d.). Guidelines for using ChatGPT and other generative AI tools. <https://provost.harvard.edu/guidelines-using-chatgpt-and-other-generative-ai-tools-harvard> <https://allea.org/code-of-conduct/>; Accessed on December 16, 2025;

Loga, R.-G. (2025). Social responsibility – An essential competence among students. How can we form it? *Annals of “Constantin Brâncuși” University of Târgu Jiu, Education Sciences Series*, (1), 1–15. https://alse.utgjiu.ro/wp-content/uploads/2025/07/10_LOGA-RALUCA-GABRIELA_SOCIAL-RESPONSIBILITY-EN-ESSENTIAL-COMPETENCE-AMONG-STUDENTS.pdf, Accessed on December 17, 2025;

Loga, R.-G. (2025). The influence of technology and digitalization on family education. *Annals of “Constantin Brâncuși” University of Târgu Jiu, Education Sciences Series*, (2), 1–14. https://alse.utgjiu.ro/wp-content/uploads/2025/09/12_LOGA-RALUCA-GABRIELA_THE-INFLUENC-OF-TECHNOLOGY-AND-DIGITALIZATION-ON-FAMILY-EDUCATION.pdf; Accessed on December 17, 2025;

Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence (EU AI Act). <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689>; Accessed on December 14, 2025;

Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. *Nature*, 614, 214–216; Accessed on December 15, 2025;

Times of India. (2025, September 19). AI is changing how Harvard students learn: Professors balance technology with academic integrity. *Times of India Education News*. <https://timesofindia.indiatimes.com/education/news/ai-is-changing-how-harvard-students-learn-professors-balance-technology-with-academic-integrity/articleshow/123998476.cms> <https://allea.org/code-of-conduct/>; Accessed on December 16, 2025;

University of Oxford. (2025a, September). Guidance on the safe and responsible use of generative AI tools. <https://www.ox.ac.uk/students/life/it/guidance-safe-and-responsible-use-gen-ai-tools>; Accessed on December 16, 2025;

University of Oxford. (2025b, September). Policy for using generative AI in research. <https://www.ox.ac.uk/research/support-researchers/research-practice/policy-generative-ai-research>; Accessed on December 16, 2025;